skip to main content


Search for: All records

Creators/Authors contains: "King, Jonathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Southern Annular Mode (SAM) is the leading mode of atmospheric variability in the extratropical Southern Hemisphere and has wide ranging effects on ecosystems and societies. Despite the SAM’s importance, paleoclimate reconstructions disagree on its variability and trends over the Common Era, which may be linked to variability in SAM teleconnections and the influence of specific proxies. Here, we use data assimilation with a multi-model prior to reconstruct the SAM over the last 2000 years using temperature and drought-sensitive climate proxies. Our method does not assume a stationary relationship between the SAM and the proxy records and allows us to identify critical paleoclimate records and quantify reconstruction uncertainty through time. We find no evidence for a forced response in SAM variability prior to the 20th century. We do find the modern positive trend falls outside the 2 σ range of the prior 2000 years at multidecadal time scales, supporting the inference that the SAM’s positive trend over the last several decades is a response to anthropogenic climate change. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Free, publicly-accessible full text available October 18, 2024
  3. This paper explores a novel approach to dexterous manipulation, aimed at levels of speed, precision, robustness, and simplicity suitable for practical deployment. The enabling technology is a Direct-drive Hand (DDHand) comprising two fingers, two DOFs each, that exhibit high speed and a light touch. The test application is the dexterous manipulation of three small and irregular parts, moving them to a grasp suitable for a subsequent assembly operation, regardless of initial presentation. We employed four primitive behaviors that use ground contact as a “third finger”, prior to or during the grasp process: pushing, pivoting, toppling, and squeeze- grasping. In our experiments, each part was presented from 30 to 90 times randomly positioned in each stable pose. Success rates varied from 83% to 100%. The time to manipulate and grasp was 6.32 seconds on average, varying from 2.07 to 16 seconds. In some cases, performance was robust, precise, and fast enough for practical applications, but in other cases, pose uncertainty required time-consuming vision and arm motions. The paper concludes with a discussion of further improvements required to make the primitives robust, eliminate uncertainty, and reduce this dependence on vision and arm motion. 
    more » « less
  4. We found that temperature-dependent infrared spectroscopy measurements (i.e., reflectance or transmittance) using a Fourier-transform spectrometer can have substantial errors, especially for elevated sample temperatures and collection using an objective lens. These errors can arise as a result of partial detector saturation due to thermal emission from the measured sample reaching the detector, resulting in nonphysical apparent reduction of reflectance or transmittance with increasing sample temperature. Here, we demonstrate that these temperature-dependent errors can be corrected by implementing several levels of optical attenuation that enable convergence testing of the measured reflectance or transmittance as the thermal-emission signal is reduced, or by applying correction factors that can be inferred by looking at the spectral regions where the sample is not expected to have a substantial temperature dependence.

     
    more » « less
  5. Abstract The generation of a register of highly coherent, but independent, qubits is a prerequisite to performing universal quantum computation. Here we introduce a qubit encoded in two nuclear spin states of a single 87 Sr atom and demonstrate coherence approaching the minute-scale within an assembled register of individually-controlled qubits. While other systems have shown impressive coherence times through some combination of shielding, careful trapping, global operations, and dynamical decoupling, we achieve comparable coherence times while individually driving multiple qubits in parallel. We highlight that even with simultaneous manipulation of multiple qubits within the register, we observe coherence in excess of 10 5 times the current length of the operations, with $${T}_{2}^{{{{{\mathrm{echo}}}}}}=\left(40\pm 7\right)$$ T 2 echo = 40 ± 7 seconds. We anticipate that nuclear spin qubits will combine readily with the technical advances that have led to larger arrays of individually trapped neutral atoms and high-fidelity entangling operations, thus accelerating the realization of intermediate-scale quantum information processors. 
    more » « less
  6. null (Ed.)
    Abstract We use theNorthern Hemisphere Tree-RingNetwork Development (NTREND) tree-ring database to examine the effects of using a small, highly-sensitive proxy network for paleotemperature data assimilation over the last millennium. We first evaluate our methods using pseudo-proxy experiments. These indicate that spatial assimilations using this network are skillful in the extratropical Northern Hemisphere and improve on previous NTREND reconstructions based on Point-by-Point regression. We also find our method is sensitive to climate model biases when the number of sites becomes small. Based on these experiments, we then assimilate the real NTREND network. To quantify model prior uncertainty, we produce 10 separate reconstructions, each assimilating a different climate model. These reconstructions are most dissimilar prior to 1100 CE, when the network becomes sparse, but show greater consistency as the network grows. Temporal variability is also underestimated before 1100 CE. Our assimilation method produces spatial uncertainty estimates and these identify treeline North America and eastern Siberia as regions that would most benefit from development of new millennial-length temperature-sensitive tree-ring records. We compare our multi-model mean reconstruction to five existing paleo-temperature products to examine the range of reconstructed responses to radiative forcing. We find substantial differences in the spatial patterns and magnitudes of reconstructed responses to volcanic eruptions and in the transition between the Medieval epoch and Little Ice Age. These extant uncertainties call for the development of a paleoclimate reconstruction intercomparison framework for systematically examining the consequences of proxy network composition and reconstruction methodology and for continued expansion of tree-ring proxy networks. 
    more » « less
  7. null (Ed.)